

Description

The SE8324 is a one switch, multi-topology LED controller that regulates LED current from input voltage above, below or equal to the output voltage. With 4.5V to 60V input, 0V to 60V output, and seamless low noise transitions between operation regions, the SE8324 is ideal for LED driver and battery charger applications in automotive, industrial and battery-powered systems.

The 60V capability coupled with the high-side current sense enables SE8324 to be used in a wide range of applications and drive in excess of 15 LEDs in series.

The special control scheme enables SE8324 to be dimming by both linear and PWM control signal.

Additional features include thermal shutdown, cycle-by-cycle current limit, output over voltage protection and over-current protection, soft start, smart thermal gradual protection, Internal Spread Spectrum Frequency Modulation for Low EMI.

The SE8324 is available in the DFN10 package.

Features

- Wide Operating Voltage Range: 4.5V~60V
- Buck, Boost, and Buck-Boost Configurations
- Linear/PWM Combined Dimming
- High-side Current Cense Mode
- Internal Spread Spectrum Frequency Modulation
 for Low EMI
- Average control for high accuracy
- 0-100% duty control, smooth current control
- Over-current Protection (OCP)
- Over-Voltage Protection (OVP)
- Over-Temperature Protection (OTP)
- Smart Thermal Gradual Protection

Applications

- luminaries, RGB lamp
- Automotive Lighting
- LED Flashlights

Typical Application Circuit (Buck-Boost)

Pin Configuration

Pin Functions

PIN No.	Name	DESCRIPTION
1	VCC	Chip Supply, Connect 1uF to GND
2	DRV	Drive External MOSFET
3	OVP	Output Over Voltage Protection
4	СОМР	Loop Compensation
5	RT	Frequency Setting Resistor
6	DIM	Linear/PWM Diming Input
7	CSW	Over Current Sense
8	VIN	4.5~60V Input Voltage
9	CSN	LED Current Cense -
10	CSP	LED Current Cense +
11	GND	Ground

Order Information

Device	Package	Temp	Ship Info		Logo
SE8324	DFN10	-40°C~105°C	Таре	4KPCS/Reel	SE8324

Absolute Maximum Ratings

Unless otherwise specified, $T_J = T_A = 25^{\circ}C$

Description	Rating	UNIT
VIN	-0.3~70	V
CSP,CSN,CSW,OVP,COMP,DIM,RT,VCC	-0.3~7	V
DRV	-0.3~VCC	V
Storage Temperature Range	-40~150	°C
Junction temperature	-40~125	°C
ESD HBM Mode	2000	V

Note: 1 Absolute Maximum Ratings are limits beyond which damage to the device may occur.

Note: 2 HBM Mode, 100pF, $1.5k\Omega$ discharge.

Recommended Operating Conditions

	MIN	MAX	UNIT
Input voltage, V _{IN}	4.5	60	V
Junction temperature, T _J	-40	125	°C

Electrical Characteristics

Unless otherwise specified, -40 $^\circ\!{\rm C}~\leqslant~T_J$ = $T_A~\leqslant~125\,^\circ\!{\rm C}$, V_{IN} =12 V

Parameter	Symbol	Conditions	Min	Typical	Max	Unit	
Power Supply							
Input Voltage	V _{IN}		4.5		60	V	
Chip Supply	V _{cc}		4.5	5.0	5.5	V	
VCC Start up	V _{UVLO}			4.5		V	
UVLO Hys	∆uvlo			300		mV	
Switch Frequency	Fsw				1	MHz	
Current Sense							
LED Current Sense	V _{CSP}	VIN-CSP	194	200	206	mV	
CSP Bias Current	I _{CSN}	VIN -CSP =50mV		8		uA	
Power MOSFET Protection			·		•		
Over Current	V _{CSW}			200		mV	
Chip Current							
Standby Current	I _{SD}	V _{DIM} <0.3V		60	100	uA	
Quiescent Current	I _{OFF}	No Switch		0.16	0.3	mA	
DIM Voltage							
DIM Floating Voltage	V _{DIM}	DIM Floating		4.2		V	
Linear High Voltage	V _{DIM_H}			0.3	0.35	V	
Linear Hysteresis Voltage	V _{DIM_HYS}		20	50	80	mV	
Min PWM Frequency	F _{DIM_MIN}			0.1		KHz	
Max PWM Frequency	F _{DIM_MAX}			20		KHz	
DIM Bias Current	I _{DIM}			2		uA	
MOSFET Driver							
High Side Resistance	R_source	V _{GS} = 5.0V		6		Ω	
Low Side Resistance	R_sink			2		Ω	
DRV High Voltage	V _{OH}	I _{DRV} =10mA	4.5		5.5	V	
DRV Low Voltage	V _{OL}	I _{DRV} =10mA			0.3	V	
Switch Time							
Min On Time	T _{ON_MIN}			100		ns	
Min Off Time	T _{OFF_MIN}			100		ns	
Temperature							
OTP shutdown	T _{END}			170		°C	
OTP start	T _{START}			120		°C	

Functional Block Diagram

TYPICAL OPERATION CHARACTERISTICS

 $(v_{\text{IN}}\text{=}5V{\sim}60\text{V}\text{,}V_{\text{OUT}}\text{=}9.8\text{V}\text{,}I_{\text{OUT}}\text{=}1.15\text{A}\text{,}C_{\text{IN}}\text{=}10\text{u}\text{F}\text{,}\text{L}\text{=}22\text{u}\text{H}\text{.})$

Dimming plots

 $(V_{IN}=8V,V_{OUT}=9.8V,I_{OUT}=0.5A,C_{IN}=10uF,L=22uH.)$

Linear Dimming

PWM Dimming

Detailed Description

SE8324 is a high accuracy average current mode multi-topology controller designed to be used with one external NMOS switch for current-driving single or multiple series-connected LEDs.

The 60V capability coupled with the high-side current sense enables SE8324 to be used in a wide range of applications and drive in excess of 15 LEDs in series.

The SE8324 is a constant off time (COT) current mode controller. The inductor current is sensed through the inductor sense resistor between the CSW and GND pins. The current sense voltage is gained up by amplifier Gi. The signal is then fed into the positive terminals of the LED current comparator. The negative terminals of comparator are controlled by the voltage on the COMP pin, which is the output of error amplifiers Av. A capacitor connected at pin COMP is used to compensate the loop to improve stability.

During the first switching phase, an external high voltage power MOSFET allows the inductor current to charge linearly until the peak maximum level is reached, at which point the MOSFET is switched off and the second phase commences, allowing the inductor current to then flow through the Schottky diode circuit and discharge linearly during one constant off time set by internal component. During the first phase, the LED current is supplied by the output capacitor.

The switching architecture will always operate at COT mode. This average current sense and COT operating mode results in an average LED current which is controlled well by the sense resistor.

LED Analog/PWM Dimming

Applying a DC voltage from 0.7V to 2.1V on the DIM Pin can adjust output current from 0 to 100% of I_{OUTNOM} . Applying a PWM on the DIM Pin can adjust output current from 0 to 100% of I_{OUTNOM} . The detailed dimming feature is showed in the below figure:

Spread Spectrum Frequency Modulation

Switching regulators can be particularly troublesome for applications where electromagnetic interference (EMI) is a concern. To improve the EMI performance, the SE8324 includes a spread spectrum frequency feature. Simple digital circuits were used to fed a quasi-triangle wave into the internal oscillator to modulate the switching frequency between about \pm 90% of the base frequency. The Spread Spectrum modulation introduces an insignificant amount of jitter to the clock.

Thermal Gradual Protection

SE8324 use a smart thermal gradual protection method to reduce the average current of the LEDs continuously in a slope dimming characteristic, not abruptly shutdown chip.

Setting LED Current

The LED current I_{LED} of the SE8324is programmable by a sense resistor R_{CS} .

$$R_{CS} = \frac{0.20}{I_{LED}}$$

Setting MOSFET Cycle by Cycle Current

The MOSFET maximum current I_{OCP} of the SE8324 is programmable by a sense resistor R_{CSW} .

$$R_{CSW} = \frac{0.20}{I_{OCP}}$$

Setting MOSFET Short Current

The MOSFET maximum current I_{SCP} of the SE8324 is programmable by a sense resistor R_{CSW} .

$$R_{CSW} = \frac{0.60}{I_{OCP}}$$

Setting Output over Voltage

The OVP fault will be triggered if the voltage at Pin OVP is larger than 1.20V.

Vovp=1.20V

Setting Switching Frequency

Pin RT may be floated as one 230K resistor is connected at Pin RT in IC internal.

R_{osc}=R_T//230K

The switching frequency of the SE8324 should be programmed in a proper range. The following equation shows the relationship between F_{SW} and V_{IN} , V_{LED} , R_{OSC}

Application Type	Switching Frequency			
Buck-Boost	$F_{OSC} = 160K \times \frac{V_{IN}}{R_{OSC}(V_{IN} + V_{LED})} $ (KHz)			
Boost	$F_{OSC} = 160K \times \frac{V_{IN}}{R_{OSC} \times V_{LED}} (KHz)$			
Buck	$F_{OSC} = 160K \times \frac{(V_{IN} - V_{LED})}{R_{OSC} \times V_{IN}} $ (KHz)			
V _{LED} : LED output voltage				
V _{IN} : Input voltage				
R _{osc} : Resistance at Pin RT, R _{osc} =R _T //230K				

For example, when Buck-Boost:

V_{IN}=12V, V_{OUT}=40V, R_T=230K (R_{OSC}=200K//230K=107K):

$$F_{OSC} = 160K \times \frac{12}{107 \times (12 + 40)}$$
 (KHz) = 345KHz

Drive LEDs Application (Buck-Boost)

Fig 1 V_{IN} =9V, I_{LED} =1.0A, Vout=9V

Drive LEDs Application (Buck)

Fig 2 Buck V_{IN}=12V, I_{LED}=1.0A, Vout=9V

Drive LEDs Application (Boost)

Fig 3 Boost V_{IN}=5V, I_{LED}=1.0A, Vout=9V

PACKAGING INFORMATION (DFN10)

Package Dimensions

Mechan	ical Data						
Size Signal	Min	Тур	Max	Size Signal	Min	Тур	Max
А	0.70	0.75	0.80	E	2.90	3.00	3.10
A1	-	-	0.05	D2	1.60	1.70	1.80
A3		0.203 REF		E2	2.30	2.40	2.50
b	0.18	0.23	0.28	е	0.50 TYP		
D	2.90	3.00	3.10	L	0.35	0.40	0.45
* Unit=mm							